Approximation reductions in an incomplete variable precision multigranulation rough set

نویسندگان

  • Sheng Yao
  • Longshu Li
چکیده

This paper deals with approaches to the granular space reductions in the variable precision multigranulation rough set model. The main objective of this study is to extend four kinds of the granular space reductions called a tolerance relations optimistic multigranulation  ower approximation distribution reduction, a tolerance relations optimistic multigranulation  upper approximation distribution reduction, a tolerance relations pessimistic multigranulation  lower approximation distribution reduction and a tolerance relations pessimistic multigranulation  upper approximation distribution reduction ,which preserve the optimistic/pessimistic multigranulation  lower/upper approximation distribution of the decision classes. Some judgement theorems are investigated. The example proves that the new variable precision multigranulation rough set model can effectively deal with incomplete information, from which we can obtain approaches to the granular space reductions of incomplete decision systems in variable precision multigranulation rough theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence-theory-based numerical characterization of multigranulation rough sets in incomplete information systems

Multigranulation rough sets are desirable features in the field of rough set, where this concept is approximated by multiple granular structures. In this study, we employ belief and plausibility functions from evidence theory to characterize the set approximations and attribute reductions in multigranulation rough set theory. First, we show that in an incomplete information system, the pessimis...

متن کامل

Multigranulation single valued neutrosophic covering-based rough sets and their applications to multi-criteria group decision making

In this paper, three types of (philosophical, optimistic and pessimistic) multigranulation single valued neutrosophic (SVN) covering-based rough set models are presented, and these three models are applied to the problem of multi-criteria group decision making (MCGDM).Firstly, a type of SVN covering-based rough set model is proposed.Based on this rough set model, three types of mult...

متن کامل

Incomplete Variable Multigranulation Rough Sets Decision

Recently, a multigranulation rough set (MGRS) has become a new direction in rough set theory, which is different from the Pawlake’s rough set since the former takes multiple granulations on the universe into account. In this paper, by analyzing the limitations of optimistic multigranulation rough set (OMGRS) and pessimistic multigranulation rough set (PMGRS) in incomplete information system, th...

متن کامل

Multigranulation decision-theoretic rough sets in incomplete information systems

We study multigranulation decision-theoretic rough sets in incomplete information systems. Based on Bayesian decision procedure, we propose the notions of weighted mean multigranulation decision-theoretic rough sets, optimistic multigranulation decision-theoretic rough sets, and pessimistic multigranulation decision-theoretic rough sets in an incomplete information system. We investigate the re...

متن کامل

Further Study of Multigranulation T-Fuzzy Rough Sets

The optimistic multigranulation T-fuzzy rough set model was established based on multiple granulations under T-fuzzy approximation space by Xu et al., 2012. From the reference, a natural idea is to consider pessimistic multigranulation model in T-fuzzy approximation space. So, in this paper, the main objective is to make further studies according to Xu et al., 2012. The optimistic multigranulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014